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Assignment 1 (first-order logic)
Q1(a). Show that I' U {a} F o iffI" = (a — o).
note. The question is asking us to show that (I' U {a} F ¢) <> (I' ¥ (o — ¢)). In other words,
if we set proposition p: (I' U {a} F ¢), and q: (I' = (oo — ¢)), then we need to show p <> q.
proof.
case 1 (=). Assume p is true. That is, assume some premise o is not in I, and that ¢ is a
tautology in I’ U {a}. That is, ¢ is always true in our proof system I' U {a}. Since we have
I' U {a} = o, then by the Completeness theorem, I' U {a} - ¢ (i.e. every tautology is

provable in a propositional logic proof system).

Note that we have U {a}r-o
which is the same as Latoe

thus, by the deduction theorem 't (o— o)
by the soundness theorem I'F(a— o)

therefore, (I' U {a} F ¢) — (I' ¥ (a0 — o)).

note. We did not need to assume that a is not in I, as a could already be part of I.
Nevertheless, the case above works regardless.

case 2 (€). Assume q is true. That is, I' (o — ) is true. That means, v(a. — @) =t. Now, we
have two "objects" or "wffs": I, and (o — o).

I'=(a— o) assumption (premise q)

I'(a— o) by Completeness theorem

case 2.1. Suppose a is not in I. Then we can simply I' U {a} by assuming some premise a.



I, (a — @), a - @ is true, because:

1. (o — @) premise
2.a premise
3.0 1,2 M.P.

therefore, we can conclude I' U {a} - if ' = (o — o).

4.T U {a} -o 1,3 M.P.

5T U {a} Fo 4 Soundness theorem

therefore, I' U {a} Fo@if ' (0 — ).

case 2.2. Suppose a is in I. Then, we can still " U {a} which is I'. Following the exact same
argument as case 2.1, we can conclude I' U {a} F @ if I' F (0 — ).

rejoinder. With case 1 and case 2, we have:

6. VU {a} Fop)—> T F(a— ) case 1
7.T=(a—09)— T U {a} =) case 2

B.(TU {a}ro)—> T F(a—9) A\ TF(—0)— T U{a}Fe) 6,7 Conjunction
9. U {a} Fo) o (I'F (a— @) 8 definition of «

This completes my proof.



Q1(b). ¢, y are tautologically equivalent iff = (¢ < ).

note. The question is asking us to show that (¢, v are tautologically equivalent) < (= (¢ <
y)) for some well formed formulas ¢ and y. Once again, we can set proposition p: @, y are
tautologically equivalent and proposition q: = (¢ <> ). Thus, we need to show p < q.

At first glance, this question is strange, because of two reasons. First, "tautologically
equivalent" isn't a term explicitly defined in lecture. But I take it that tautological equivalence
to be <. Second, if my understanding is correct, then the question reads "Show that (¢ <> )
> (F (¢ <> y)) is true", which seems almost trivial. But there is a subtle significance to this
biconditional.

proof.

case 1 (=). Assume p: @, y are tautologically equivalent, i.e. (¢ <> y). By assuming that (¢
<> ), we are asserting that for some proof system I, I' F (¢ <> y).

case 1.1. I" does not contain any additional wffs, i.e. it only contains the axioms I-IX and MP.

Then I' = (¢ <> ) is really just = (¢ <> ). Therefore, we can conclude ((¢ <> y) — (5 (¢ <

v)).

That is,

1. (¢ < V) assumption (premise p)

2.5(p e v) because our assumptions must be tautological
3.((pevw) = (Fleew) 1,2 MP

case 1.2. I" contains some additional wffs, including the axioms I-IX and MP. Then, our
assumption asserts that in I, (¢ <> ) is true. From that, we can conclude (I' = (¢ < v)).
Therefore, for some proof system I', where (¢ <> y)isin [, ((¢p <> y) = (I' = (¢ <> y))) is in
I'. We can simply restate this as "((¢p <> y) — (F (¢ <> y))isin ™.

Combining case 1.1 and case 1.2, ((¢ <> y) — (F (¢ <> y)) is true.

That is,



4. (g y)isin’ assumption (premise p)
5.TE(p e vy) because our assumptions must be tautological
6. (poy) > (F(pey)isinl 4,5 MP

case 2 (€). Assume q: F (¢ <> ). Since (¢ <> y) is a tautology, we can conclude (¢ < y).

7.5(p V) assumption (premise q)
8. (p V) if something is tautological, it exists as an "object" in I"
9. (F(@ = v) = (9= V) 7,8 MP

rejoinder. Combining case 1 and 2:
10. (¢ = ) = (F (@ = v) A (F (@« y) = (¢ ) 3,9 Conjunction
1. (¢ > v) « (F (¢ < v)) 10 definition of «

This completes my proof.



Q2. (Duality) Let o be a propositional wff whose only connectives are V', /\ and —. Let a*
be the formula obtained from o by interchanging each \V with /\ (and every /\ with /), and
replacing each propositional symbol with its negation. Show that a* is tautologically
equivalent to —a.. You should use induction.

proof by structural induction.

base case. Let o = p. Note that it has no connective symbols. To obtain a*, we must go
through three steps as outlined in the question. Step 1: replace every \V with /\. We obtain p.
Step 2: replace every /\ with V. We obtain p. Step 3: replace every propositional symbol
with its negation. We obtain —p. Thus, a* = —p. Note that the negation of a is —a, which is —p.
Evidently, —p = —p, therefore —~a = a/*.

note. All wif are constructed in a recursive manner. For example, p /\ q is a parent of two
children: p, q. The children are connected via /\, a binary connective symbol. This example
also covers V' by replacing /\ with V. Another example: —p is a parent of one child, p,
which is "connected" by —, a unary symbol.

case2 (/\).Leta=p A q.

We want to obtain a* and —a. To do so, we apply the operations relevant to o* and —~o and

compare the results.

l.p Aq this is o

2.p/\q replace every V with /\

3.pVq replace every /\ with

4.—pV —q replace every propositional symbol with its negation

we obtain o* =—p V —q.
Next, we negate a.
5p N\ q this is a

6.~(p /\ q) o,



7.7 p V —q De Morgan's law

We obtain —o.=—p V —q.

Comparing (4.) and (7.), we see that they are exactly the same. Therefore, we conclude that
-0 =o*.

case3 (V). Leta=p V q.

We follow the same operations and logic as before.

8.pVq this is a

9.p N\ q replace every V with /\

10.p N\ q replace every /\ with

11.p A —q replace every propositional symbol with its negation

We obtain o* =—p A —q.

Next, we negate a.

12.p V q this is o
13.-(p V q) —a,
14.—p A\ —q De Morgan's law

Comparing (11.) and (14.), we see that they are exactly the same. Therefore, we conclude that
- = o,
case 4 (7). Let a = —p.

We follow the same operations and logic as before.

15.—7p this is a

16. —p replace every V with /\

17.—p replace every /\ with

18. ~(—p) replace every propositional symbol with its negation
19.p "Double negation" rule

We obtain a* = p.



Next, we negate a.

20. 7 this is a
21. ~(—p) -
22.p "Double negation" rule

Comparing (19.) and (22.), we see that they are exactly the same. Therefore, we conclude that
- = o,
note (""Double negation' rule). ~(—p) = p because of its corresponding truth table values. As

the first and third columns is exactly the same, =(—p) = p.

(p) (p) ~(—p)
1 0 1
0 1 0

Induction step. Through the results of the base case, and cases 2-4, and given that a is
constructed recursively, a* will always be tautologically equivalent to —a. This is regardless
of how complex a is. For example, if a = —(p V' q), we note that a is either covered by the
base case, or cases 2-4. If we let (p V' q) = B, then o = =(B), which is covered by case 4. B
itself is covered by case 3. The propositional symbols themselves, i.e. p, q, are covered by the
base case.

This concludes my proof.



Q3. Use H to denote the propositional system consisting of the following three rules:
LFA—->B—A)

IL-FA->B->0)—>((A—->B)—(A—-0)

MP. A, (A—B)-B

Use this system to prove the theorem A — A. Hint. The first step is to prove the following
theorem: (A — (A > A) > A) > (A—(A— A)) —> (A—A)).

Note. There are two axioms, and one rule of inference MP. We want to prove the theorem A
— A. We also note that A, B, C are wff, which contains propositional symbols, and could
contain connectors, i.e. =, —, /\, V.

Proof. Let A be A, Bbe (A — A), and C be A. Then,

I.-(A—>(A—A)—A)) axiom I, restated
2FA-(A—-A)—-A) > (A>(A—>A)—>(A—A) axiom II, restated

3A->(A—>A)—>A)A—->(A>A)>A))>(A>A—-A) - (A>A)F((A

—(A—A) > (A—A) 1,2 MP
4. A assumption
5A, A->(B—A)rB—-A) I,4 MP

For this result specifically, if we replace B with A, we obtain:

6.A, A>(A—>A)-(A—A) 5 restated
7.FA—(A—A) by Deduction theorem
8 A—->LA—-A),(A>A—>A) - (A—>A)F(A—A) 3,7MP

This concludes my proof.



Q4. (First-order logic.) Show that { V x(a—), Vx(a)} = Vx(B).

Want to show. if ./ = V x(a—p) and if .«7 = V x(a), then .«/ = V x(B) for some structure ..
Proof. Suppose we have a structure /.

A= Y x(oo— B)ay, ..., a,] if X, ..., X, includes all free variables, and the "p—q" truth table
holds in .« Set this as premise 1.

A= YV x(o)ay, ..., a,] if X, ..., X, includes all free variables, and for each a € .+, we have .«/
= Vx(a)[ay, ..., a,]. Set this as premise 2.

Given premise 1 and 2, we obtain.«/ F ¥V x(B)[a,, ..., a,] via Modus Ponens. That is, in
premise 2, we know that a is true for all X in .«Z In premise 1, we know that a — 3 holds for
all x in .« Thus, we obtain f is always true for all X in ..

This completes my proof.



Assignment 2 (completeness, compactness, chains)
Q1. Prove these using the formal definition of F.
(a) {Vx(a— B), Vxa} F VxB
proof. Consider some language £ and some structure .«Z, and some I, a set of well-formed

formulas in first-order logic.

Suppose {Vx(a— B), Vxa} S T.  (where a, B are some wff in first-order logic.)
Then 'k Vx(a— B),

and I'= Vxo.

Vx(a— B) — (Vxo— VxpB) Axiom I of A

{Vx(a— B), Vx(a— B) — (Vxa— VxP)} + Vxa— Vxp by MP rule
{Vxa— VxB, Vxa} - VxB by MP rule

{Vx(a— B), Vxa} = Vxp by Soundness theorem O

(b) a F Vxa, if x does not occur free in a.
proof. Consider some a, a wif in first-order logic, which contains a bounded variable x.

Consider some I" where {a} & I'. Thatis, I' - a.

a— Vxo Axiom IV of A, given that x is not free in a
{a, 0 —> Vxa} F Vxa by MP rule

't Vxa since {a} S T

' Vxa by Soundness theorem

Since we have I' F a and T" = V' xa, we conclude that a F V xa (by definition of ). []

Q2. One of the following is valid, the other is not. Give a proof (from the axioms, and

not using the metatheorems) of the valid one:

(Vxo)—(3yp)  — ()



Vxe—(Iy)e) —@Q
proof. since Vx(¢ — (Fy)o) = ((Vx) — (VxIye)) via Axiom III of A, we can rewrite
equations (1) and (2) to obtain the following:

(Vxg)— (Jyp)  —O3)

(Vx@) = (Vxdyp) —(4)
case 1. (4) The RHS of (4) asserts that ¢ has two bounded variables, x and y. However, on the
LHS of (4), x is the only bounded variable in the same ¢. Therefore, (4) is invalid.
case 2. (3) It is evident that (3) only has one bounded variable in ¢, given that there is only
one quantifier on the LHS (universal) and the RHS (existential). That is, if 'V x¢ is true, that

necessitates the existence of a single x where ¢ is true. Thus, Jye is true, as desired. []

Q3. Are the following statements true or false? If the statement is true, prove it (from the
axioms and metatheorems, but not using the Completeness Theorem). Otherwise, give a
counter-example.

@TFa— (B—vy)ifand only if T+ (a A B) — 7.

claim. This statement is true.

proof.

case 1. (=)

Assume ' o — (B — v). Assume o < T

{,a=>PB—=>7i+-(P—y) MPrule

Assume § € T

B, B—=7iry MP rule

Therefore, {a, B} + vy, i.e. (o /A B) — y. Thus, I' - (a /\ B) — v as desired.

case 2. (¢)

Assume '+ (a /\ B) — v. Assume o, p € T



(a A\ B) Conjunction
{(@ A B) (@A P)—v}ry MPrule

therefore, I' U {a} U {B} vy
rvfe}-E—-1y) Deduction theorem
'coa—-P—vy) Deduction theorem

Combining both cases, I' - oo — (B — v) if and only if I" - (a. /A B) — v as desired.[]

(b)TH(a V B) — yimpliesthat ' -a —yand '+ B — 7.
claim. This statement is false.

proof. Assume I' is consistent, i.e. I" only proves tautologies.
case 1. Assume '+ (a V B) — 7.

ry{aVpry Deduction theorem

case 2. Assume['Fa— 7y, -3 —v.

'Y {o} =y, " U {B} =y  Deduction theorem

Thatis,I' U {a, B} Fv. This impliesT" U {a /\ B} F7.

rejoinder. It is clear to see that a \V B # o /A B. Therefore, I' - (o V' ) — y does not imply

thatI' o —yand ' — .

proof by counterexample. Suppose o, v is true, while B is false. Then, (o V' p) — y and o —

v is true, while B — vy is false. Therefore, '+ (o V B) > v, TFa—vy,andT ¥ — 7.

(c)T'+a—yorT'FB — yimpliesthat T+ (a V B) — 7.
claim. This statement is true.

proof. Assume I' is consistent.

case 1. Assume ' -a — .

v {a} -y Deduction theorem



rd{oaVpry Generalisation
'@V p)—y Deduction theorem

case 2. Assume ' - — 7.

v {p} vy Deduction theorem

ry{aVpry Generalisation

'@V p)—y Deduction theorem

rejoinder. Given case 1 and 2, we have I' - (o \V B) — v as desired. [

Q4. Let £ = {<} be the language with a single binary relation, and let .4= (N, <) be the
natural numbers with the usual ordering. Show that there is a structure M = (M, <") that
satisfies all the same sentences of ./ (they are elementarily equivalent, written M = .4), such
that .A( contains an infinite descending chain of elements: ... <* m; <*m, <'m,.

proof. Let us construct M such that M =N U {... <*m; <'m, <"m,}, where m; (forany i €
N) is not in N. In fact, m; need not be a number. All we know about m, is that ... < m; <*m,
<*m, holds. Since "an infinite descending chain of elements" is inexpressible in first-order
logic, it is clear to see that .M = ./4; given the construction of .M. Thus, every first-order logic
sentence will only be about N, of which both .4and .l contains. Specifically, if I' is the set of
first-order logic sentences about -4, assume that I" is (finitely) satisfiable. Given the
construction of .U(, I" is also the set of first-order logic sentences about M. As I' is finitely
satisfiable, I is satisfiable (by Compactness Theorem). Set I'; = { Vx Jy(x <y)}. It is evident
that Vx Jy(x <y)is true forall x,y € N. Vxdy(x <y)isstill true evenifx,y € N U {m;:
1 € N}, or if we treat m; as a number beyond the naturals (whatever that means). Formally,
let @ : all sentences of .#'that is satisfiable. Similarly, let ¢ : all sentences of .U that is

satisfiable. Let S: Th(g ). Let T & S be finite. By the Compactness theorem, T is satisfiable



in 4. Given how . is constructed, T is satisfiable in .M. Thus, ¢ _,= ¢, Th(¢ ,) = Th(¢,), and

M= [



Assignment 3 (set theory)
Q1. By considering a variation of Russell’s paradox, show that AX) & X is false for
every set X. Do not use the Axiom of Regularity.
proof. Assume AX) & X is true, for contradiction. By definition of a powerset, X & AX).
By definition of &, since X & AX), X & X. Consider the standard version of Russell's
paradox: R = {x | x ¢ x}. It informs us that sets that contain themselves are not well defined,
as it leads to logical contradictions. Formally, the logical contradiction that follows is: R & R
—RER.Given X € XandR € R «— R € R, we obtain X € X, a contradiction about X.

Therefore, AX) 4 X. [

Q2. Let R be a binary relation. The domain and range for a binary relation are the same
as for a function: dom(R) = {x : dy((x,y) € R)} and ran(R) = {y : Ix((X,y) € R)}.
Prove that the domain and range exist.
proof. Note the definition of a binary relation:

Let A and B be sets. A (binary) relation R from A to B is a subset of A x B.

Given an ordered pair (X, y) in A x B, x is related to y by R, written:
x Ry, if and only if, (x, y) € R.

Assume that R is a binary relation from A to B. It immediately follows from the definition of
a binary function that the domain and range of R exists. By definition of R, we have (x, y) in
A x B. This means that for all x, there will exist a y such that (x, y) € R. Hence, dom(R) is
satisfied. Similarly, ran(R) is satisfied as by definition of R, we have (x, y) in A x B,

implying that for all y, there exists an x such that (x, y) € R. []

Q3. If fis a function and A is a set, must f N A% equal f1 A? Here ! is function restriction.



proof. Consider the definition of a function, f: X = Y, where X and Y are sets, and X is the
domain, and Y is the codomain. Note that f can be represented as a set of ordered pairs.
case 1. A ¢ X, A ¢ Y. By definition of f, (x,y) € f|x € A,y & A. Thus, f N A? = 2. Similarly,
f? A=2as A X as the domain of f is restricted to 2.
case 2. If A € X, A €, then:
case2.1.(x,y) Ef|x €E A,y¢ A. WeobtainfN A’=2asy&A.
case 2.2. fI A restricts the domain of f, while retaining the codomain of f. Thus, fI A
is nonempty, given A & X.
case 2 (rejoinder). Given that f N A>=2 and f! A is nonempty, fN A>#ft A(asfPACTN
A? as there exists an element z € ! A such that z & £ N A?).
case 3. IFAI X, A C Y, thenf N A*>=2, and 1 A = 2. The reasoning is similar to case 1. By
the definition of f, (x, y) € f|x € A,y € A. Therefore, (x, y) & A%. Therefore, fN A? =2, {1
A =2as A 4 X as the domain of f is restricted to 2.
case4. IfA € X, A C Y, then(x,y) € f|x € A,y € A. Thus, f N A’ =11 A as every
element in the LHS and RHS are in A”.
Rejoinder. Thus, f N A? and £ A need not be equal, as demonstrated in case 2. Restrictions
only affect the domain of a function, leaving the codomain unaffected. This is in contrast with

the intersection of A2, which requires elements in the ordered pair to be in A. []

Q4. Prove that if a, b are sets, then (a, b) exists.

proof. Consider the definition of an ordered pair: (X, y) = {X, {X, y}}. Consider the axiom of
pairing: VxVy3dz((x € z) [] (y € z)). Assume that a, b are sets. Thus, by the axiom of
pairing, we can construct the set {a, b}. Applying the axiom of pairing again on our newly

constructed set, along with a once again, we obtain {a, {a, b}}, which is (a, b). []



QS. Prove that every vector space has a basis.

definition (vector space). An [R-vector space is a set V, with an operation +, and a set of
functions {f.: r € R} which satisfies some axioms. That is, V contains the 0 vector, is closed
under addition, and scalar multiplication.

definition (basis.) A basis of a subspace is a set of linearly independent vectors that spans the
subspace.

definition (chain). a sub-ordering C & P on which (C, <) is linear.

definition (maximal). An element p is maximal iff there is no q strictly greater.

Zorn's lemma. Suppose a partially ordered set P has the property that every chain in P has an
upper bound in P. Then the set P contains at least one maximal element.

proof. V= {v,, v,, ..., v,} where every v, is a vector.

case 1. Suppose V = {0}. It immediately follows that the 0 vector spans V, and that 0 is
linearly independent.

case 2. Suppose V # {0}. w.t.s. that chains can be constructed, and that every chain has an
upper bound. The maximal element is a basis of V.

construction of chains. V is linearly dependent. Therefore, many subsets of V contain
vectors which are linearly independent. Let us group all these subsets together. P = {W: W C
V A W is linearly independent}. We also want P to be partially ordered. How can P be
partially ordered? One way is by inclusion, i.e. W, < W, iff W, © W,. Thus, we order P as
such. Given the order of P, there exists chains within P. Thus, C C P.

upper bound within chains. Given our construction chains, it is not immediately apparent
whether there is an upper bound. Suppose C is a particular but arbitrary chain in P. C = {c¢;}
for some indexing i. The upper bound of C can be taken via the axiom of union. c,, = U{c;}

for all 1. We could index 1 with the ordinals. Once we reach an appropriate ordinal, i.e. when



all ¢; has been included, c,, is an upper bound. Note that ¢, is in C as c,, is linearly
independent. It also adheres to the partial order as ¢; C c,,.
Application of Zorn's lemma. Since P is a partial order, and every chain in P has an upper

bound, P contains a maximal element. Take the maximal element to be a basis. O]
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