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In this essay, I argue that infinite structures exist, thereby making noneliminative 

structuralism viable. I argue that since we possess knowledge of theorems, and we are able to 

discuss mathematics, such structures must exist. 

Structuralism argues that mathematics is the study of structures. Shapiro (2000) 

defines a system as "a collection of objects with certain relations among them" (p. 259). He 

defines a structure as the "abstract form of a system, highlighting the interrelationships 

among the objects" (p. 259). In particular, one disregards any non-essential features (i.e. the 

features that have no influence on relations) about systems when abstracting to a structure. 

Shapiro defines implicit definitions as the "simultaneous characterization of a number of 

items in terms of their relations to each other" (p. 283). An example of an implicit definition 

is the equation x2 + y2 = 1 where the function itself is implicitly defined by the equation. That 

is, the equation implicitly defines y as a function of x, without constructively saying what the 

function is. Another interpretation is that at least two "entities" are being simultaneously 

characterised, the equation and the function, in terms of their relations to each other. The 

former is canon, while the latter is more "radical". The latter alludes to the ontological 

concerns of entities. What exactly is "x" and "y"? What is its mode of being? This is 

Shapiro's motivation when he makes an ontological distinction about universals: ante rem and 

in re. He defines ante rem realism as "some universals exist prior to and independent of any 

items that instantiate them" (p. 262). Contrastingly, in re universals are "universals [that] are 

ontologically dependent on their instances" (p. 262). 
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The significance of Shapiro's distinction of ante rem and in re becomes apparent when 

one considers the ontology of numbers. Suppose we are an in re universalist, and we erased 

every symbol corresponding to the number 3. We would have successfully destroyed the 

universal 3. Thus, in re universalists are forced to conclude that 3 no longer exists, and we 

ought to preserve at least one copy of the symbol in a secure warehouse deep underground. If 

I were to propose this to the government, I would not only be berated for suggesting the 

waste of taxpayers' money, but also for suggesting that numbers themselves can be destroyed. 

Similarly, if I brought this proposal to a mathematics department, they would swiftly escort 

me out. But what if an in re universalists insists that their conclusion is genuine and 

true—that numbers can be genuinely destroyed? Consider the closed interval, [0, 2136279841−1]. 

The largest, currently known prime number, which happens to be a Mersenne prime, is so 

unfathomably large that, reasonably, no one has written it down, prior to the discovery of its 

primeness. Would it have existed prior to this? An in re universalist would argue no. If that is 

true, then how could have someone written it down? To acknowledge the social aspect, 

suppose the first person to state 2136279841−1 is a bot, or a computer, or someone/something that 

is not a human. Then the in re universalist would argue we (humans) only learnt of the 

Mersenne prime because a computer told us. The question remains, how did they, whoever 

they are, learn or know or write of something that does not exist? The burden is on in re 

universalists to elaborate. It should be noted that fictionalists have something to say; they 

argue that mathematical entities should be treated as fictional entities, and that the practice of 

mathematics itself should be done under pretense, i.e. that we should all pretend that 

mathematical entities exist. Thus, fictionalists would argue that we either created 2136279841−1, 

as we would with fictional entities, e.g. Harry Potter, or that 2136279841−1 does not really exist. I 

argue that fictionalists would need to say more, as they have yet to address the necessarily 

truth aspect of 2136279841−1 being a Mesenne prime. That is, we know that Harry Potter is a 
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British alumnus of Hogwarts, for example, but he could have easily been an alumnus of a 

different school, because we will it so. Since Harry Potter is created by us, would we not have 

the ability to change things, or make things true or false? Fictionalists could rebut saying that 

if Harry Potter is no longer an alumnus of Hogwarts, he would not be the Harry Potter, 

merely a different Harry Potter. While this is fine for fictional characters, is it really the case 

for mathematical entities, whose properties are necessarily true? 

Furthermore, consider Cantor's diagonalisation on the closed interval. Regardless of 

how many numbers we write down, we will always have a well-defined procedure of 

generating numbers not already on our list. Thus, in re universalists (and everyone else) are 

committed to this: one has the ability to generate, and thereby write down, an infinite number 

of numbers. There is nothing immediately wrong with this ability. Only when coupled with 

the need for an explanation for how one can write a non-existent object into existence does it 

become problematic. Similarly, fictionalists would need to say where do the mathematical 

properties of fictional entities arise from. That is, what makes the n-th term on our list 

different from our n+1-th term? Thus: 

1. We have the ability to discover new theorems. 

1.1. We have the ability to write down an unending number of numbers. 

2. We have the ability to discuss mathematical theorems. 

In re universalists might counter, arguing that we are not actually writing numbers 

down, merely symbols which correspond to some number. Thus, when we erase all 

mathematical symbols, we are not actually destroying anything but the symbols themselves. 

If in re universalists took this position, they would need to provide an ontology of numbers. 

Thus far, we have seen the ontological concerns pertaining to mathematical entities. How is 

structuralism relevant? 
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In the canon of philosophy of mathematics, some assert that mathematical knowledge 

is necessarily true, a priori, and abstract (Linnebo, 2017, p. 3). Following the definition of a 

system and a structure, one must accept one characteristic: abstractness. The status of the 

remaining two characteristics is not immediately apparent. Structuralism features in the 

discussion of ontology because of its two perspectives: places-are-offices, and 

places-are-objects. The places-are-offices perspective is of "the context of one or more 

systems" (Shapiro, 2000, p. 268). Consequently, "the positions of a structure are more like 

properties than objects" (p. 268). Contrastingly, the places-are-objects perspective is only in 

the context "in which the places of a given structure are treated as objects in their own right, 

at least grammatically" (p. 268). That is, we are sensitive to the particulars of said object, and 

said structure. To elaborate on the places-are-objects perspective, Shapiro illustrates with a 

chess analogy (p. 268-9). We distinguish between bishops on black tiles and white tiles, as 

bishops on black tiles will only ever land on and move onto black tiles, and never on white 

tiles. Thus, there is a meaningful difference between bishops on black and white tiles, within 

a specific structure. Whereas, the places-are-offices perspective would be more focused on 

how bishops on black tiles would behave, across different structures, e.g. across different 

types of chess boards. 

These two perspectives offer us a toolkit for understanding mathematical objects. That 

said, a problem is made precise from these perspectives; Is the natural number 1 the same as 

the real number 1? More precisely: are offices of different structures the same? Is the office 

of 1 in the naturals the same as the office in the reals? Under places-are-objects, one could 

argue that yes, 1ℕ is the same as 1ℝ. I can take a bishop from one chess board to another and 

nothing about the object itself would have changed. Thus, places-are-objects could argue that 

some properties are necessarily true, e.g. 1ℕ is the same object as 1ℝ. However, this line of 

reasoning does not immediately say anything about the necessary truth of theorems. For 
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example, "Φ1: the four colour theorem is true" is necessarily true. This is not to say we could 

have been mistaken. Rather, the truth value of the four colour theorem is not up to us. My 

point is: the places-are-objects perspective could explain why certain statements are 

necessarily true, but whether this is generalisable to all mathematical statements remains to 

be seen. Likewise for the places-are-offices perspective. There are two immediate objections 

to this bishop-moving argument. If I moved a bishop from a twelve-by-twelve board to 

another twelve-by-twelve board, I would not have shifted the bishop from one structure to 

another. It remains in the same structure, just on a different board. This is easily remedied. I 

can simply shift the bishop from a twelve-by-twelve to a two-by-two, or a five-dimensional 

(with time travel) chess board. One can argue that the change in the physical dimensions of a 

chess board necessitates a change in the properties of a structure. That is, since the three 

given chess boards are not isomorphic to each other, they are not the same. The second 

objection is this: how is this analogy relevant to the places-are-offices perspective, given that 

the mathematical mode of being is not the same as chess pieces? More to the point: what is 

the mode of being of mathematical objects? Consider this: 1 is the multiplicative identity of 

any structure. Thus, since only one object has this property, it is the same between structures. 

A places-are-offices defender would disagree with this justification, arguing that the stated 

properties (multiplicative identity, uniqueness) are properties of the office itself. The fact that 

only one object can hold this office is merely a result of the uniqueness property of the office. 

They could argue, in response to places-are-objects, that the natural numbers have multiple, 

set-theoretic definitions. Thus, while the underlying constructions could change, the 

properties of the numbers do not. How might places-are-objects respond? Thus, I argue 

(trivially) that an important distinction arises. We can have knowledge about properties, 

without arriving at an ontology. Thus, structuralism is the study of structures, agnostic to an 

ontology of objects. 
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Is this agnosticism a genuine part of structuralism, or are structuralists committed to 

an ontology? Eliminative structuralists argue that they are not committed to the existence of 

structures, but rather appeal to a background ontology which facilitates the emergence of 

structures (Shapiro, 2000, p. 271; Linnebo, 2017, p. 164). An example of an appeal to a 

background ontology is Dedekind's Categoricity Theorem, where he argues that arithmetic 

statements are generalisations over simply infinite systems (Linnebo, 2017, p. 165). 

Meanwhile, noneliminative structuralists are committed to the existence of structures, 

sensitive to the background ontologies it emerges from (p. 161). Dedekind defines "a set S 

and function s to be a “simply infinite system” if S is one-to-one, there is an element e of S 

such that e is not in the range of s (thus making S Dedekind-infinite), and the only subset of S 

that both contains e and is closed under s is S itself. In effect, a simply infinite system is a 

model of the natural numbers." (Shapiro, 1997, p. 176). I argue that the eliminativist position 

is problematic due to the non-commitment to the existence of structures. Shapiro (2000) 

argues that a structuralist needs an account of when a purported implicit definition succeeds 

(p. 285). He argues that there are two requirements for a successful implicit definition: the 

existence and uniqueness condition. He argues that at least one structure satisfies the axioms, 

and that at most one structure is described. If Shapiro is right, how would eliminative 

structuralists fulfil these two conditions? Noneliminativists could argue that Shapiro's 

conditions are vacuously met, as structures do not exist. I counter—what are 

noneliminativists' mathematical statements about, if not mathematical structures? Shapiro 

(2000) asserts that mathematics presupposes that satisfiability is sufficient for existence (p. 

289). He argues that "ante rem and eliminative structuralists accept this presupposition and 

make use of it like everyone else, and are in no better of a position to justify it" (p. 289). 

Thus, adhering to mathematical satisfaction, theorems must be satisfied by some 

mathematical structure, Γ, or Δ. Strictly speaking, any mathematical theorem, φ, need not 
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presuppose the existence of Γ. One could formally sidestep the existence condition by arguing 

that if Γ exists, then Γ semantically and syntactically entails φ. However, my question 

remains: how can we have knowledge of φ, if φ does not actually exist? 

3. Let Γ be some mathematical structure. Let Δ be the ZFC axioms. Let ℒ be an 

appropriate language of Γ. Let φ be some well-formed formula of ℒ. 

4. If Γ exists, then φ is syntactically and semantically entailed by Γ for some 

valuation, a. 

5. We have knowledge of φ. 

6. If φ exists, then Γ exists. 

7. If I have knowledge of φ, φ exists. 

8. Therefore, Γ exists. 

Thus, I argue that mathematical knowledge is knowledge of mathematical structures, 

i.e. knowledge of the existence and nature of structures, its objects, the theorems and proofs 

that follow, that some conjectures are true, or false, or undecidable, &c. Thus, the contention 

is about where our ability to generate knowledge arises from. 

9. We generate knowledge from Γ. 

10. Δ, e.g. the ZFC axioms, is forced on us to be true. 

10.1. That is, Δ is necessarily true, and abstract. 

10.2. Δ need not be the ZFC axioms. It could be any suitable set of axioms. 

11. First-order logic is necessarily true, and abstract. 

12. We have the ability to create mathematical definitions. 

13. Set theory need not be the foundation of mathematics. It could suitably be 

category theory. 

Thus, I argue that the suitable background ontology really is mathematical structures. 

Thus, we have reason to be noneliminative structuralists. Eliminativists structuralists would 
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disagree, as they are only committed to the patterns which arise from the natural world. But 

what are these patterns, if not instances of mathematical structures? Thus, the necessarily true 

aspect arises from (9.)-(11.). Linnebo (2017) characterises this commitment as the ontological 

dependence claim (p. 163). I see nothing wrong with being ontologically dependent on Δ, or 

ℒ, or first-order logic. In contrast, Resnik (1981) argues that mathematical objects are 

"structureless points" without "internal compositions" which are somehow "arranged in 

structures", or are just "positions in structures" (Risnek, 1981, p. 530; Linnebo, 2017, p. 162; 

Shapiro, 2000, p. 259). As Linnebo and Shapiro notes, Resnik's position is problematic. What 

does it mean for relations to exist independent of structures? How can something be arranged 

in a non-existent structure? Noneliminativists need not be strictly committed to the premises 

(7.) to (13.). For example, Shapiro (2000) takes issue with (9.), and builds his structuralist 

position on higher-order logic (p. 267). Thus, reconstructions of this nature are possible. 

Similarly, we need not be committed to simply infinite structures, as we can replace 

Dedekind's simply infinite structures with mathematical structures in set-theory, e.g. 𝒩 = (ℕ, 

(fi)i≤n, (Rj)i≤n, (ck)i≤n), which is assigned the smallest cardinal, �0 —i.e. 𝒩 is an infinite 

structure. Minimally, noneliminativists are committed to some mathematical structure being 

true, be it set theory, or category theory, or something else. I argue that this commitment is 

not problematic, as we have the ability to do mathematics. There is some degree of freedom 

in our practice and philosophy of mathematics as we have the ability to "create" definitions, 

e.g. ℒ = ((fi)i≤n, (Rj)i≤n, (ck)i≤n, =, <). However, nothing is false about the definitions that we 

use. Thus, this degree of freedom is not problematic. Furthermore, we understand our 

theorems. We can prove other theorems with it, and we can apply it outright. Mathematical 

meaning exists because there is an underlying truth about the relations we describe. To take a 

leaf out of Maudlin (2019)'s book, why can't mathematical objects have its own, unique 

ontology, beyond Aristotle's and our current classifications of being, thereby providing an 
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answer to the ontology of mathematics (p. 89)? More could be said about the commitment to 

the existence of structures. For example, could we not also generate knowledge from the 

possible existence of structures? I am skeptical of this, as then we would be committed to our 

theorems being possibly true, not necessarily true. Thus, I have shown that mathematical 

knowledge is generated from mathematical structures. Since we have knowledge-of, such 

structures genuinely exist, which makes our commitments non-problematic.  
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